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* 1. Introduction

This report considers the problem of selling an asset on the open

market. As the seller waits for a good offer, he or she receives a

random (both in time and in magnitude) sequence of offers. After each

offer is received, the seller must decide whether or not to sell, weigh-

* I ing the possibility of obtaining a better offer against the cost of

continuing to wait. Successive offers are independent random variables

* with a common distribution F having finite mean and variance. There

is a cost c > 0 incurred for each unit of time the asset remains

unsold. We will consider three alternative assumptions about the timing

of offers. The first is that offers arrive with a fixed, known, period-

icity (periodic offer rate). The second is that each period there is a

fixed but unknown probability of receiving an offer, which is independent

of the size of the offer (geometric offer rate). The third is that the

times between offers are independent, identically distributed random

variables, with a known distribution (random offer rate). Under the

first two assumptions, offers can only be accepted at the start of a

period. Under the third assumption, any offer still in force can be

accepted at any time. The objective is to maximize the total expected

net revenue from the search and sale. We will consider both the case

where only the most recently obtained offer may be accepted (no recall),

and the case where any previously received offer may be accepted (recall

allowed). Also, we will consider both finite and infinite time horizons.

The selling problem is one of several related problems, the most

general of which is that of optimally acquiring and divesting assets.

.1 This latter problem, however, involves a sequence of ongoing decisions,

whereas the selling problem involves only a one-time stopping decision.
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Themot coslyrelated problem to teselling problem is thtof buin

an asset. The buying problem, however, is less general in that offers

(price quotes) are assumed to arrive periodically. In the selling problem

the scenarios of geometric and random offer rates are important, because

the seller usually must wait passively for offers to arrive, whereas the

buyer may actively search for the best price. The timing of offers is

thus an important aspect of this report.

The selling problem arises in many contexts in addition to selling an

asset. One is successively interviewing candidates for a job (the secre-

tary problem). Another is in quality assurance, where one sequentially

inspects items from a population to find one with an acceptable measure of

quality. In this context a periodic offer rate would apply when the inspec-

tion process is regular, with a fixed cost or time per inspection. A geo-

metric offer rate would apply when there is a fixed but unknown probability

that a given inspection will not yield conclusive results and will have to

be repeated. A random offer rate would apply when the inspection process

itself is irregular, or when the next time to be inspected must first be

located, the locating process taking a random amount of time.

A number of authors have established the existence and properties of

optimal search policies when the price distribution, F , is known and

the offer rate is periodic:

1) Optimal stopping rules have been shown to exist, both when

recall is allowed and under no recall. This result requires

only the hypothesis that max{Z,O} have a finite mean and

variance, where Z -F .

2) The optimal stopping rule is characterized by a reservation

price, i.e., a price R , possibly dependent upon the number

3d
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if of periods remaining or originally available, such that the

seller should continue to wait if and only if the current

best available offer is less than R.

3) The infinite-horizon optimal expected net return exists and

is the limit of the finite-horizon optimal expected returns.

4) The optimal stopping rule when recall is allowed is myopic,

i.e., the same optimal policy is arrived at if, regardless

of the number of periods actually remaining, one acts as if

only one period remains. (In this case the reservation price

is independent of the time horizon.)

5) When recall is allowed the optimal policy never accepts a

previously passed-by offer except possibly in the last period.

6) In the case of no recall, the finite-horizon reservation

prices converge to the infinite-horizon reservation price.

This report will investigate conditions under which the above

properties hold when the distribution of offers is unknown and the

seller's prior distribution of offers undergoes a Bayesian updating

as successive offers are received. We will also examine the effects

of the alternative assumptions on the timing of offers. For previous

work on this and related problems, see Albright [2], DeGroot [4], Derman,

Lieberman, and Ross [5], Kohn and Shavell [9], Rothschild [12], and

Telser [15]. In general, however, only limited results have been

obtained regarding the form of optimal policies.

In the recall-allowed case, the main objective of this report is to

investigate the efficiency and properties of myopic policies. (Myopic

policies have also been investigated by Chow and Robbins [3], Abdel-

Hameed [11, and Pratt, Wise, and Zeckhauser [11].) For the no-recall



-V-

4

case, the objective is to derive conditions which ensure the optimal policy is

reservation (characterized by a reservation price). For the related buy-

ing problem, see Rothschild [12], and Rosenfield and Shapiro [13].

In Section 2, we illustrate the greater complexity of optimal poli-

cies when the distribution of offers is unknown. In Sections 3 and 4,

we consider the cases of recall allowed and no recall, respectively,

assuming a periodic offer rate. In Section 5,we investigate extensions

to geometri-.. and random offer rates.

i. Some Counterexamples

When the distribution of offers is unknown and the seller updates

his or her beliefs about it after each offer is observed, many of the

properties established for the known-distribution case may fail to hold

unless additional conditions are imposed. This is so even in the

simplest case of a periodic offer rate. Consider the following

examples.

Example 2.1 - Recall Allowed There exist two possible offer distri-

butions. Each concentrates its mass on two offers, the first on $400

and $600, the second on $600 and $800. Within each distribution, the

lower offer is nine times as likely as the higher offer. The cost per

offer is $12. Suppose that, a priori, the first distribution is nine

times as likely to preVLil as the second, and that the first offer

* received is $600. Then a posteriori, the two price distributions are

equally likely. With one period to go, it is optimal to stop and

receive a net revenue of $588, since the alternative of continuing has

an expected return of $586. An analysis of the problem with two periods

to go is diagrammed below.
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! Stop -- $588

Stop a576 Observe $400 oe564

Observe$600 Continue EVce Observe d600$0)tie
yontinue Wh t root e d re even564

foObseconinuin,1havng oserve $00 once i $9 herve $800 u 764

The optimal policy stops if an offer of $800 is received, since

it is the maximum offer possible. Also, if, after receiving an offer

of $600, an offer of $400 is subsequently observed, the optimal policy

stops and recalls the $600 offer, since the $400 offer implies the

first price distribution is the one that prevails. With one period

to go, the expected value for continuing, having observed $600 twice,

is $582. The net revenue from stopping is $576, and so the optimal

policy continues. With two periods to go, the expected net revenue

from continuing, having observed $600 once, is $589. The net revenue

from stopping is $588, and so the optimal policy continues. Since the

one-period look-ahead analysis said to stop, the optimal policy is not

myopic. Also, the optimal policy is not characterized by a reservation

price since it continues after receiving a $600 offer but stops after

a $400 offer. Finally, the optimal policy sometimes stops and recalls

a previous price (if a $600 offer is followed by a $400 offer) before

the final period; this never happens if the price distribution is known.
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Example 2.2 - No Recall (due to Rothschild [12]) There exist two

possible offer distributions. The first is degenerate at $3; the

second concentrates its mass on $4 and $5, with $5 being far more

likely. If an offer of $3 is received, the optimal policy stops;

but if an offer of $4 is received, the optimal policy continues

since the likelihood of soon observing $5 is high. Thus, no reser-

vation price exists.

3. Unknown Price Distribution with Recall Allowed

We consider in this section and the next the case of a periodic

rate of one offer per unit of time. Let F(pjp.) be the forecasting

distribution of the next offer, given the vector p- = (p1 ,.'' ' PN)

of previously received offers. Let z(g) = max{pi} denote the best
i<N

offer received so far, and Vt (9) denote the maximum expected net

return given a history of offers p- and a t-period horizon. The

recursive relationship which characterizes the finite-horizon maximum

expected net return is

Vt (.) - max{z(.) , -c + f Vt_1 (p_,p) dF(p0p.)} • (3.1)

Following a myopic policy, the stopping condition is obtained from a

one-period look ahead:

V max{z(p.) , -c + J (z(p) v p)dF(pfp)}

The stopping condition for this one-period look-ahead policy is

z(P) >-c + f (z(p) v p)dF(pP.) (3.2)

or, equivalently

PERN _._M-
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c > G z(L)1L (3.3)

where

x

where

If (3.3) determines the optimal stopping rule, then the optimal policy

,1 myopic. A sufficient condition for this to occur is as follows.

Theorem 1 If G(z(p)jp) never crosses c from below with additional

observations, then the optimal policy (finite and infinite horizons)

is myopic.

Proof. The finite-horizon proof is by induction on the number of

periods, t. First suppose that (3.3) (or equivalently (3.2)) holds

for 4.. Then by the hypothesis of the theorem, (3.3) will hold for

, PN+l) ,and so a one-period look-ahead criterion will say stop.

Thus, by the induction hypothesis

Vtl PN+l) - z(p.) v PN+l

and with t-l periods to go it is optimal to stop. In this case,

the optimal stopping criterion for the t-period problem is

- +f t-I ( , d (P - -z -c f v p)dF(p jp - z - < 0 ,
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and so stopping is also optimal for the t-period problem. If (3.3) does

not hold, then

-C + Vt_ (p-,p) dF(pP.)-z(p-) >-c + /(z(p)v p)dF(pL1.)-z(p-) >0 ,

and it is optimal to continue.

The infinite-horizon optimal net return V is the limit of the

finite-horizon returns, so if (3.3) holds

V = limV z(2 v '
(D vN+l

and the optimal return is obtained by stopping. As in the finite-

horizon proof, when (3.3) does not hold

-c+JV (9, ) di (Pj14 -z( ) > c+ (z(q)vp)dF(pID.) - z(p) > 0

and it is optimal to continue. 0

.
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The quantity G(z(p) IP-) is the expected gain from one more

offer. As Theorem 1 shcws, if this quantity never crosses c from

below with additional observations, then as soon as the expected gain

from one more observation becomes less than the cost to obtain it,

the expected gain from any number of additional observations will nct

cover their cost. Thus a myopic policy prevails. Without this kind

of condition on the behavior of G(z( . ) , a one-period look-ahead

analysis may be inadequate.

Corollary 1. If G(z(V)j Pl .. , depends only upon N and z(p.),

and is nonincreasing in each, then the optimal policy is myopic and is

characterized by a reservation price. Furthermore, the reservation

price is decreasing in N.

Proof. By the mcnotonicity of G(z(Qz)I .) in N and z(p), G(z(p.)Ip)

decreases with additional observations. Thus by Theorem 1, the optimal

policy is myopic. The optimal policy is determined by the sign of

G (z( - c

Let R = sup{p:G(plp... pN) - c > 0} . Since G is nonincreasing

in zW. one should stop if and only if z(.) > % , and since G is

nonincreasing in N , the reservation price % is nonincreasing in N

The monotonicity in N of the reservation price can lead to

situations where the reservation price becomes larger than the best

possible price and therefore to situations where one should obtain one

more offer then stop regardless of what it is. This will be illustrated

in an example to follow. First, however,we derive another corollary

of Theorem 1.
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Corollary 2. Suppose offers are distributed as F(p+t) , where t

is an unknown translation, and that the posterior distribution for

t is a function h(tiz(R),N) , which depends upon z(R) and N only.

Suppose also that for z(R) fixed, h(tlz(p.),N) has monotone likeli-

hood ratio (MLR) in t relative to N , and for N fixed,

h(u-zz(p)I zp) , N) has MLR in u relative to z(L) . Then the optimal

policy is myopic with nonincreasing reservation prices.

Proof. We establish the result by showing that the conditions of

Corollary 1 are satisfied.

G(z(R.) 1.) ( p F(P)dp = fz(4) JF(p+t)h(t z(p),N)dtdp

= G(z (V)+t) h(tlz(L) N)dt

Since G(z(A)jp.) depends only upon z(p.) and N , all that remains

to show is its monotonicity. It can be shown that if a density

f(xle) has MLR in x relative to 6 and if y(x) is monotonic

in x , then

fy(x)f(xle)dx

in monotonic in e in the same direction as y Applying this result

to the above expression for G(z()ji) yields that G(z()Ip, ... pN

is nonincreasing in N . Also,

A density f(xle) has monotone likelihood ratio in x relative

to e if and only if for all 61 > 2 , f(xe 1 )/f(xle 2) is non-

decreasing in x .

b. _
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G(z(Q)jp.) = G (u)h(u-z(p Lz(p) ,N)du,

so applying the result once more yields that G(z(p)1p) is

nonincreasing in z(Z ) •

Example 3.1 Multinomial Distribution with a Dirichlet Prior

There exist m possible offers p1 9 "'. pm" The Dirichlet

prior is characterized by parameters N1 I'... N which are analogous

to the frequencies of these offers. The probability of observing

offer pi is N IN , where N = Ni  After observing an offer pk

the prior distribution is updated by incrementing Nk by one , ef-

fectively increasing the probability of observing pk somewhat and

decreasing the probability of the other offers slightly.

Since

Pm-i PM
G(z(R)Ipl, "'N = I (Pk+l-Pk) X N /N (3.4)

k=z (p) jk+l

it follows that the multinomial distribution with a Dirichlet prior

satisfies the hypothesis of Corollary 1 . Thus the optimal policy is

myopic and is characterized by a sequence of reservation prices which

is nonincreasing in N To illustrate the one-more-offer-then-stop

phenomenon, take m=3, NI =3 , N2 =2, N3 = I , pl = 7 ,p2=14,

p3 = 21 , c = 3.75 If the first offer is $7 we continue; but whatever

offer is next received we stop, since G(kl7,k) < c for k- 7, 14,

or 21 .

"I I l,... i .. .... . .. ,is .. ... i ... . .. .. . .... IW ' " .. ... . .. ..... ...... .-= .. _A
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Example 3.2. Exponential Distribution with an Unknown Translation

Let X be a random variable having an exponential distribution

H(x) = 1 - e (t+x)with an unknown translation t. Let

Z - - 2t - X. This operation re-orients the exponential

distribution, putting its mass on (-i,-t] instead of [-t,

X (t+z)
The distribution of an offer Z is then F(z) - e (t+z < 0).

Such a distribution may be realistic because often the seller does

not know of an explicit upper bound on offers, but may believe that

offers are clustered near the unknown upper bound.

Let r(t) be the prior density on the unknown translation, and

assume that r(.) is log-concave. Then the posterior density for t

can be written as

r(t)X N exp( f (Pi+t))If (D) + t 5. 0}

h(tlpl ,...,PN) =

Jr(u)XN exp( i (+u))Ifz(P) + u < 0 }du

= K(z(p))r(t)eXNt I{z p) + t < 0}

where K(z(;.)) is a function which depends upon z(p) only. Thus

the posterior density of t can be written as a function of z(,P)

and N. For a fixed value of z( i) and N > M

h(tlz(p) ,N) X(NM)t

h(tlz(p) ,M)

Therefore h(tlz(4.) , N) has MLR in t relative to N. For fixed

N and y > x,

. -1 -. .. I I. .... . .. .... .. . . ... . .... . l| '' .... . i, ... .. . . . " .. ..... .-I ... ... . . . .
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C~~)r(u-y)
h(u- x , N) - r(u-x)

where C(x,y) depends upon x, y and N, but not u. By the

log-concavity of r(.) , r(u-y)/r(u-x) is nondecreasing in u , and

so h(u-z(A)Iz(V.),N) has MLR in u relative to z(p) . Thus the

conditions of Corollary 2 are satisfied and the optimal policy is

myopic with nonincreasing reservation prices.

Example 3.3 Normal Distribution with Unknown Mean

Assume that offers are normally distributed with unknown mean

and variance 1 , and assume the prior distribution of U is itself

normal with mean 0 and variance 1/T . Let 4 and 0 be the distribu-

tion and density functions of a standard normal random variable. This

example does not satisfy the hypothesis of either corollary. However,

as shown in DeGroot [4], if

cz 02
(T0 + 1)2n

then the optimal policy is myopic. Furthermore, the stopping criterion

is

*-l (c[T/( +l)1%

where p'p) is the posterior mean, T - T0 + N is the posterior

precision (reciprocal of variance), and

p(x) - (1 - D(z)ldz - ¢(x) - x[l-4 (x)]
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The optimal policy for this example may not be reservation. The search

may terminate not only upon receiving a very high offer, but also a

very low one. (In the latter case the seller would realize offers are

* much lower than originally thought.)

To summarize, Theorem 1 roughly says that for the optimal policy

to be myopic, observing a low offer must cause the mass associated with

high offers to decrease. Distributions with origin-related (or, in

some cases, mean-related) unknown parameters typically have this prop-

erty. In general, one would not expect to find myopic optimal policies

associated with distributions with unknown spread-related parameters.

For example, it can be shown that the optimal stopping rule for a normal

price distribution with known mean and unknown variance is not myopic,

because observing a very low offer increases the variance estimate and

therefore increases the likelihood of subsequently observing a high

offer.

4. Unknown Price Distribution with No Recall

The main issue here is when is the optimal policy a reservation-

price policy. Rothschild [12] has examined the multinomial distribution

with a Dirichiet prior and found the optimal policy to be reservation.

Our result is more general in that it is not specific to a particular

family of distributions; however, it does not cover the multinomial'

Dirichlet.

Definition Given a vector of observed offers, let a sufficient offer

be an offer which, if observed next, would cause a seller, following an

optimal policy, to stop and sell. Define an insufficient offer similarly.
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If the indicated action is strictly preferred over the alternative,

we call the offer strictly sufficient or insufficient.

Consider two sellers who have received almost identical sequences

of offers (all but one offer identical), and who started with identical

priors. Suppose that the seller who received the higher of the non-

identical offers has a next-offer distribution which puts more mass

on high offers than that of the other seller, and suppose also that

the expected gain from one more offer of this seller is not too much

greater than that of the other seller. This roughly describes a

condition under which a reservation-price policy will prevail.

Theorem 2. Suppose that for all N-component vectors of observed

offers p_2>q. which differ in exactly one component,

F(xIp.) < F (xIq) for all x

and

G(xjq,) 2 G(x + 6/Njp.) for all x

where A denotes the positive component in p - q.. Then

(i) the difference in the sellers' expectations of the next

offer observed, Z , is bounded by 0 and A/N , i.e.,

0 < E[Zjpi - E[Zqj : S/N . (4.1)

(ii) For all t (including t - w) , the differences in the

sellers' pre-posterior expectations of the value of con-

tinued search is bounded by 0 and A/N , i.e.,

jq
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0 < E [V t_ .9,Z) ] - E [Vt_1 (4,Z) I A/N. (4.2)

In particular, if p and q are insufficient offers

for pl ' PN-1 and q "" qN-1' respectively,

then

0 < Vt(-) - V (q) A/N. (4.3)

(iii) The optimal policy is a reservation-price policy.

4 _ _ 0
Proof. For any random variable E[Y] =  F(y)dy f F(y)dy. Thus

E[ZIDJ - E[ZIZ] - A/N = lim [F(0pjpV - F(p 12)1dp - A/N (4.4)

< lim sup[f 'F(p.)dp 7- r F(pj+)dpI
T -- 17 iTA/N

< lim sup[G(TI;p) - G(T - A/NI.) ] < 0

This and the stochastic dominance of F(xlp.) over F(xlq) establishes

(i).

The other finite-horizon conclusions of the theorem will be

established by induction on the number of periods remaining, using the

recursive formula

Vt (9.) maX{pN.- c + J Vtl(.0)dF(PP} (4.5)
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I For the one-period problem, (ii) follows from (i) since V (p.,P) - p

To establish (iii), let x be an insufficient offer and y a strictly

sufficient offer for p.. (If x or y do not exist, the reservation

price is trivial.) From the recursion (4.5),

E E(., )[V 0 (.P-, y,Z) I< y + c (4.6)

EDx V0 (9g,X, Z) I> x + c (4.7)

Since V 0 (9g,Z) Z for all Z , these inequalities imply

E (., Y) [Z] E-SLX [Z] < y-x

If y < x this contradicts the right-hand inequality of (4.1), which

has already been established. Thus y > x , and the optimal one-period

policy is reservation. Now assume (ii) and (iii) hold for the t-period

problem, by the induction hypothesis V t(q,Z) < Vt (p,Z) .Thus by

stochastic dominance

E *[ V t(q.,Z)J E R[ V t(Z,Z)J < E P_[V (J.,Z)I

This establishes the nonnegativity in (ii). Let P,Q be the t-period

reservation prices for pj; respectively. Then

E J[V (g.,Z)] E [V (SLZ)]

- pf(pjU)dp - pf (p Is)do + V t (S~ f(p0IL)dp

-JVt (q,p) f (p 1.)dp

It follows from the induction hypothesis on (ii) that P _Q

After some algebraic manipulations, the above becomes
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rQ
p[f(pS.)- f(plq)]dp + V (= ,p) [f(pl ) f(plq)]dp

(4.8)

+ [Vt(I-,P) -P]f(pI,_)dp + j [Vt (-,P) -Vt (-Lp) [f(plz)dP

After integration by parts the first two terms become

[F(pl;) - F(plq)]dp + Q_)a/ap[vt (4,p)][F(pjp-)-F(pl,)]dp

By the induction hypothesis a/ap[V t (4,p) I < I/(N+1) for p < Q

so using (4.1), the first two terms of (4.8) are bounded above by

[1-1(N+1)] [F(pI1.) -F(p14)]dp + [E [ zi.] -E [ z 411 /(N+l)

_ [G(Qlp.) - G(QI4)]N/(N+l) + A/(N 2 +N) .

Next we establish a bound on the third term of (4.8). For Q < p < P

vt.,p) - P : Vt ,Q)-Q + (p-Q)[ max {a/ap[VtC ,p)} -1]

Since V (PQ) - Q = V (,Q) - V (4,Q) < A/(N+1)t t t

and 3/3P[V t(;.,p)] S 1/(N+1) for Q <i p :< P by hypothesis,

Vt (.,p) - p < A/(N+l) - (o-Q)N/(N+I) Q < p < P (4.9)

ttEvaluating (4.9) for P P and noting that V t(2.,P) - P yields an

upper bound on P of Q + A/N. Thus

-[V (LP) plf(pll.)dp _ (N+1)-I f [ A-pN+QN]f(p/N dp
-N
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Integrating the right-hand side by parts yields an upper bound

F(QIl)A/(N+I) - [G(QLA) - G(Q + A/NIp2)]N/(N+I)

The last term of (4.8) is bounded by F(QI;p)A/(N+I) . Combining these

bounds on the terms of (4.8) yields

E [V (IL,Z)] - E [V (Z.,Z)] < A/N + [G(Q+A/Np) -G(QIq)]N/(N+l)

The second term of the right-hand side is nonpositive by hypothesis,

and so (ii) is established for the (t + 1)-period problem. The proof

of (iii) for the (t + 1) -period problem follows exactly as in the

one-period case by use of (ii).

For t = =, conclusion (ii) follows as a limiting case of the

finite-horizon result. Conclusion (iii) then follows as before. 0

If the next-offer distribution given a history of offers 9- is

merely a shifted version of that given Z , and if the shift is between

0 and A/N in magnitude, then the conditions of Theorem 2 will hold.

Thus distributions with unknown location- or mean-related parameters

might be expected to have optimal policies which are reservation.

Example 4.1 Normal Distribution with Unknown Mean

Let Z- (!ul) with u an unknown parameter with prior
X(1109 l/) .After observing 9-, the posterior on p is XN(pNI/(T+N))

and the posterior on Z is X(' 1 +1/(+N)) , where
NP

(T + pi9/Ct + N)
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Since the posterior of Z given 4 is X(v N -A/(T+N) , +1/(T+N))

F(xjIs - F(x + A/(T + N) I 9)

Thus the hypotheses of Theorem 2 are satisfied.

Example 4.2 Exponential Distribution with an Exponential Prior

Let X have an exponential distribution F(xlx) = 1 - e-Xx

where X is an unknown parameter with an exponential prior density

a e  0 Let the next offer be Z = M-X. (M is the maximum

offer possible and is presumed known.) The posterior density of X

given a history of offers R is

h(XJ..) (aN) N+X eaN

N!

where aN = a0 + J(M-Pi) . The posterior distribution of Z is

F(zjV) a, _]=+

for IZ > Z, F(z.V) < F(zla) , so the first hypothesis of Theorem 2 is

satisfied. To verify the second hypothesis, note that

aN N+1 aN N+l

G(Xjp) - -_ dz N +M-a /N-x
HN~ N(aN+M -x) N N

Let k be the index of the nonzero coordinate of p- . Then

G(x.) - G(x-A/Nlq) d(pk) - d(q k)

where

:*
I
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(K1 + M-y)N+
d (y)-N

N(K2 + (M-y)(N+1)/N)
N

K - +i k (M-pi)

and

K2 K1 + M x (M- pk)/N

Since d'(y) < 0 for y < pk ' d(Pk) - d(qk) < 0 , and so the second

hypothesis of the theorem is satisfied.
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5. Geometric and Random Offer Rates

The preceding results assumed a periodic offer rate. However,

those results involving the multinomial distribution with a Dirichlet

prior can be applied to the case of a geometric offer rate by adding

a parameter p0 - 0 to describe a null offer and a parameter N to

describe the frequency of periods with no offer.

Under certain conditons the preceding results can be applied when the

offer rate is random. Let H(.) be the distribution of times between

offers under a random offer rate assumption. Let

( -w)dF( )

1 - H(w)

Note that P(O) is the mean time between offers, and p(w) is the

expected remaining time until the next offer given the last offer was

received w units of time ago.

Let Vt (p) be the maximum expected net return given a history

of offers p, a maximal number t of offers which can be considered

in the future, and given that an offer has just been received. Sup-

posing an amount of time w has passed since the last offer, the

decision on whether or not to accept the best offer still in force is

determined by

max{y(p), - c P(w) + f Vt-I(P,p)dF(Ip)}

where

max{p i recalled allowed
y(P-) i

no recall

. . . ....... .. ..3 , .. , , -.. .... .. ......... . ..P
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We now show that if R(.) has the following "aging" property, then the

only possible times at which an optimal policy will stop are when an

offer has just been received.

Definition H(-) is new better than used in expectation (NBUE) if and

only if p(w) < p(O) for all w > 0

The notion of new better than used in expectation originates in

reliability theory. It constitutes one of the weakest notions of aging

of physical devices.

Theorem 3. If H(.) is NBUE , then the optimal policy never stops

in between offers.

Proof. Given an offer has just been received, the optimal policy

contiuues if and only if

y(P_) < - c P(0) + I Vt(p-, p)dF(pI -)

Given w units of time have passed since the last offer, the optimal

policy continues if and only if

ywu) < - c P(w) + V t-1lRp)dFpIp)

since u(0) > U(w) the result follows.

By Theorem 3, all the results of Sections 3 and 4 can be extended

to the case of a random offer rate with NBUE inter-offer times by

replacing c by c P(0).
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6. Conclusions

When the offer distribution is unknown, the information obtained

from previous offers can influence the distribution of the next offer

in a very elaborate fashion. Thus it is not surprising that the

optimal policies are generally more complex than in the case of a

known distrl')ution. The conditions we have given which guarantee

optimal policies which are no more complex than in the known distri-

bution case are clearly restrictive; they would fail to hold for most

families of distributions. However, as we have shown, there are

important cases where the optimal policies will retain the same

simplicity and properties of the known distribution case.

Future research in this area should perhaps consider optimization

among a smaller class of policies which are most intuitive and easily

implemented, and might seek to develop bounds on the loss resulting

from such a policy restriction. The work by Derman, Lieberman, and

Ross [51 is a step in this direction. Another area of investigation

should be random offer rates when the NBUE condition does not hold.
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